Selection of the railroad container terminal in Serbia based on multi criteria decision making methods

  • Milan Milosavljević The School of Railway Applied Studies, Zdravka Čelara 14, 11000 Belgrade, Serbia
  • Marko Bursać The School of Railway Applied Studies, Zdravka Čelara 14, 11000 Belgrade, Serbia
  • Goran Tričković The School of Railway Applied Studies, Zdravka Čelara 14, 11000 Belgrade, Serbia
Keywords: Location Model, Container Terminal, TOPSIS, ELECTRE, MABAC


Intermodal transport is one of the key elements for sustainable freight transport at large and medium distances. However, its efficiency in many cases depends on the location of the railroad container terminals (CT). The favorable position of Serbia provides an opportunity to establish a large number of container trains, which can lead to a more developed intermodal transport system in the entire Balkans and beyond. In this paper the problem of the container terminal location in Serbia has been considered and resolved. The aim of this paper is to determine the potential macro location of the CT in Serbia, which will be most suitable for different stakeholders in the transport chain. Choosing the most suitable alternative is a complex multi-criteria task. For this reason, a multi criteria decision-making model has been formulated which consists of a number of alternatives and criteria. Alternatives represent potential areas for a site, while some of the criteria are: cargo flows, infrastructure, economic development, social and transport attractiveness and environmental acceptability. For defining weights of the criteria two approaches are used, namely, the Delphi and the Entropy method. In this paper three methods of the multi criteria decision-making, namely, TOPSIS, ELECTRE and MABAC are used. By comparing the results of these three methods, an answer to the question where to locate CT will be presented. This is the first step in determining the location of the container terminal. The next phase should respond to the issue of micro location of the terminal. Also, after certain customization, the model can be used for solving other categories of location problems.


Asakereh, A., Soleymani, M., & Sheikhdavoodi, M. (2017). A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran. Solar Energy, 155, 342-353.

Barysiene, J. (2012). A multi-criteria evaluation of container terminal technologies applying the COPRAS-G method, Transport 27 (4), 364-372.

Božanić, D., Pamučar, D., & Karović, S. (2016). Primene metode MABAC u podršci odlučivanju upotreba snaga u odbrambenoj operaciji. Tehnika - Menadžment, 66(1), 129-136.

Božanić, D., Pamučar, D., & Karović, S. (2016). Use of the fuzzy AHP - MABAC hybrid model in ranking potential locations for preparing laying-up positions. Vojnotehnički glasnik, 64(3), 705-729.

Čičak, M. (2003). Modeliranje u železničkom saobraćaju. Saobraćajni fakultet. Beograd.

Dimitrijević, B. (2016). Višekriterijumsko odlučivanje. Saobraćajni fakultet, Beograd.

Gigović, Lj., Pamučar, D., Božanić, D., & Ljubojević. S. (2017). Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renewable Energy, 103, 501-521.

Hwang, C. L, & Yoon, K. (1981). Multiple attribute decision making: Methods and Applications. Springer, New York.

Karović, S., Pušara, M. (2010) Kriterijumi za angažovanje snaga u operacijama. Novi glasnik, (3-4), 37-58.

Keshavarz Ghorabaee, M. et al. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26 (3), 435-451.

Keshavarz Ghorabaee, M. et al. (2016). A new COmbinative Distance-based ASsessment (CODAS) method for multi-criteria decision-making. Economic Computation and Economic Cybernetics Studies and Research, 50 (3), 25-44.

Klose, A., & Drexl, A. (2005). Facility location models for distribution system design. European Journal of Operational Rsearch, 162 (1), 4-29.

Knjižice reda vožnje uz red vožnje za 2016/2017. godinu, Sektor za prevoz robe „Železnice Srbije“, Beograd, 2016.

Limbourg, S., & Jourquin, B. (2009). Optimal rail-road container terminal locations on the European network. Transportation Research Part E, 45 (4), 551-563.

Maroi, A., Mourad, A., & Mohamed, N. O. (2017). ELECTRE I Based Relevance Decision-Makers Feedback to the Location Selection of Distribution Centers. Journal of Advanced Transportation, 1-10.

Miletić, S. (2007). Metodologija izbora glavnih poštanskih centara i lokacije poštanskih centara. XXV Simpozijum o novim tehnologijama u poštanskom i telekomunikacionom saobraćaju - PosTel 2007, 201-212.

Milosavljevic, M., Bursac, M., Trickovic, G. (2017). The selection of the railroad container terminal in Serbia based on multi criteria decision making methods. VI International Symposium New Horizons 2017 of Transport and Communications, 7, 534-543.

Mučibabić, S. (2003). Odlučivanje u konfliktnim situacijama. Vojna akademija, Beograd.

Opštine i regioni u Republici Srbiji, Republički zavod za statistiku, Beograd, 2016.

Pamučar, D., Ćirović, D. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Systems with Applications 42(6), 3016-3028.

Pamučar, D., Vasin, Lj., Đorović, B., & Lukovac, V. (2012). Dizajniranje organizacione strukture upravnih organa logistike korišćenjem fuzzy pristupa. Vojnotehnički glasnik, 60(3), 143-167.

Regionalni bruto domaći proizvod, Regioni i oblasti Republike Srbije, Republički zavod za statistiku, Beograd, 2015.

Senvar, O., Otay, I., & Bolturk, E. (2016). Hospital Site Selection via Hesitant Fuzzy TOPSIS. IFAC-PapersOnLine, 49-12, 1140-1145.

Srđević, B., Medeiros, Y., & Schaer, M. (2003). Objective Evaluation of Performance Criteria for a Reservoir System. Vodoprivreda, Vloume 35 (3-4), 163-176.

Statistike za 2011, 2012, 2013, 2014, 2015 i 2016. godinu, Sektor za plan i analizu „Železnice Srbije“, Beograd, 2015.

Stević, Ž., Vesković, S., Vasiljević, M., & Tepić, G. (2015). The selection of logistics center location using AHP method. 2nd Logistics International Conference, 86-91.

Tadić, S., Zečević, S., & Krstić, M. (2014). A novel hybrid MCDM model based on fuzzy DEMATEL, fuzzy ANP and fuzzy VIKOR for city logistics concept selection. Expert Systems with Applications, Volume 41, 8112-8128.

Tomić, V., Marinković, Z., & Marković D. (2014). Application of TOPSIS Method in Solving Location Problems, the Case of Western Serbia. Research & Developement in Heavy Machinery, 20 (3), 97-104.

Uysal, H. T., & Yavuz, K. (2014). Selection of Logistics Centre Location vie ELECTRE Method: A Case Study in Turkey. International Journal of Business and Social Science, 5 (9), 276-289.

Vujičić, M., Papić, M., & Blagojević, M. (2017). Comparative Analysis of Objective Techniques for Criteria Weighting in Two MCDM Methods on Example of an Air Conditioner Selection. Tehnika - Menadžment, 67 (3), 422-429.

Vuković, D. (2014). Višekriterijumski izbor podsistema JGTP od strane društvene zajednice - studija slučaja „Beovoz“. Tehnika, Volume 69, No. 1, 121-126.

Žak, Jacek., & Weglinski, S. (2014). The selection of the logistics center location based on MCDM/A methodology. Transport research Procedia, 3, 555-564.